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Abstract

Accommodation cues are measurable properties of an image that are associated with

a change in the geometry of the imaging device. To what extent can three-dimensional

shape be reconstructed using accommodation cues alone? This question is fundamental to

the problem of reconstructing “shape from focus” (SFF) and “shape from defocus” (SFD)

for applications in inspection, microscopy, image restoration and visualization. We address

it by studying the “observability” of accommodation cues in an analytical framework that

reveals under what conditions shape can be reconstructed from defocused images. We do

so in three steps: (1) we characterize the observability of any surface in the presence of a

controlled radiance (“weak observability”), (2) we conjecture the existence of a radiance that

allows distinguishing any two surfaces (“sufficient excitation”) and (3) we show that in the

absence of any prior knowledge on the radiance, two surfaces can be distinguished up to the

degree of resolution determined by the complexity of the radiance (“strong observability”).
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We formulate the problem of reconstructing the shape and radiance of a scene as the min-

imization of the information divergence between blurred images, and propose an algorithm

that is provably convergent and guarantees that the solution is admissible, in the sense of

corresponding to a positive radiance and imaging kernel.

1 Introduction

An imaging system, such as the eye or a video-camera, involves a map from the three-dimensional

environment onto a two-dimensional surface. One can attempt to retrieve the spatial information

lost in the imaging process, by relying on prior assumptions on the scene and using pictorial in-

formation such as shading, texture, cast shadows, edge blur etc. All pictorial cues are intrinsically

ambiguous in that the prior assumptions cannot be validated: given a photograph, it is always

possible to construct (infinitely many) different three-dimensional scenes that produce that same

image.

As an alternative to relying on prior assumptions, one can try to retrieve spatial information

by looking at different images of the same scene taken with different imaging devices. Measurable

properties of images which are associated with a changing viewpoint are called “parallax” cues

(for instance stereo and motion)1.

In addition to changing the position of the imaging device, one could change its geometry. For

instance, one can take different photographs of the same scene with different lens apertures or

focal lengths. Similarly, in the eye one can change the shape of the lens by acting on the lens

muscles. We call “accommodation cues” all measurable properties of images that are associated

1Note that it is still necessary to make a-priori assumptions, in order to solve the correspondence problem.
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with a change of the geometry of the imaging device.

The study of accommodation raises a number of questions. Is accommodation a visual cue (i.e.

does it carry information about the shape of the scene)? What are the conditions under which

two different scenes can be distinguished, if at all? Do such conditions depend upon the particular

imaging device? If two scenes are distinguishable, is there an algorithm that provably distinguishes

them? How does the human visual system make use of accommodation? Is it possible to render

the accommodation cue, so as to create a “controlled illusion” in the same way photographs do

for pictorial cues? In this manuscript we intend to answer some of these questions rigorously for

an idealized imaging model, and test the resulting algorithms on realistic data sets.

1.1 Relation to previous work

Depth from defocus can be formalized as a “blind deconvolution” of certain integral operators, a

problem common to many research fields. The same mathematical formulation appears in inverse

filtering, in speech analysis, in image restoration (corrupted by noise or optical aberrations), in

source separation, in inverse scattering, in computer tomography. These are problems studied

in a number of fields such as signal processing, information theory, communication theory and

computer vision. Consequently, this paper relates to a large body of literature.

Solving blind deconvolution can be posed as the minimization of a discrepancy measure between

the input data and the model that generates the data. However, this approach inevitably leads

to multiple solutions due to the ill-posedness of the blind deconvolution problem. A common

procedure used to guarantee desirable properties of the solution and its uniqueness, is to add

regularization terms. Most regularization schemes impose smoothness constraints that are not
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appropriate for all scenes. For example, [2] proposes a total variation regularization that is

effective in recovering edges of images. Alternatively, regularization with wavelets is explored by

[15, 22, 25].

In the computer vision community, blind deconvolution is known as passive depth from defocus

(e.g. [14, 34, 36, 40, 41]), which is different from active depth from defocus ([10, 24, 26, 35]) in

that no structured light is used. While in the passive technique both the radiance (or “texture”

or “deblurred image”) and the depth are unknown, in the active case the radiance is given as a

pattern projected onto the scene.

The literature on active/passive depth from defocus can be divided into two main groups: one

poses the problem within a statistical framework ([32, 30, 31, 33]), and one as a deterministic

optimization ([27, 28, 29, 13]). In the statistical approach, one choice is to use Markov random

fields to describe both the images and the space-variant point spread function. This eliminates

effectively the need for windowing, allowing for precise depth and radiance estimation also where

the equifocal assumption is not fully satisfied. Other methods ([7, 37, 7]) work on differential

variations in the image intensities using masks or exploiting aperture changes. In the determinis-

tic approach, we find that many algorithms formulate the problem in the frequency domain. The

advantages of such a representation are overshadowed by inaccuracies due to windowing effects,

edge bleeding, feature shifts, image noise and field curvature (see [6, 21]). A solution is to use

highly specialized filters that operate in narrow bands. The main problem is that narrow-band

filters have to be defined on a large support; therefore, the amount of computation grows con-

siderably. Xiong and Shafer [45] propose a set of 240 moment filters that select narrow bands of

the radiance, and allow for precise depth estimation. Gokstorp [11] uses a multiresolution local
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frequency representation of the input image pair. Many algorithms operate in the spatial domain

(see [43, 23, 26, 8]). One approach involves rational filters tuned for restricted frequency bands.

For the active depth from defocus, optimal patterns are derived and projected onto the scene

according to the chosen point spread function. When the optical point spread function is modeled

with a 2D Laplacian, the best pattern is a checker board. A number of other spatial domain

algorithms exist (see [40, 46, 1, 18]) where the scene is approximated by a planar surface, or the

analysis is concentrated on step edges, line edges, occluding edges and junctions (see [18, 1]).

In our paper we study depth from defocus under a deterministic point of view. We pose the

problem in a rigorous mathematical framework, and derive conditions for a unique reconstruction

of both radiance and surface. In particular, we give precise definitions of observability of radiance

and shape for active and passive depth from defocus (see Sections 2 and 4), and identify which

radiances are “unobservable” and to what degree reconstruction of radiance and shape is possible

(see Section 3). A similar study, but restricted to finite impulse response filters, has been done in

[12].

In addition to answering observability issues, we propose a locally optimal algorithm which

borrows mainly from blind deconvolution techniques [16, 38]. We choose as criterion the mini-

mization of the information divergence (I-divergence) between blurred images, motivated by the

work of Csiszár [5]. The algorithm we propose is iterative, and we give a proof of its convergence

to a (local) minimum and test its performance on both real and simulated images.

5



1.2 Notation and ideal formalization of the problem2

In order to introduce some of the concepts that we will address in this paper, consider a scene

whose three-dimensional shape is represented by S and that emits energy with a radiance r. While

we will make the meaning of S and r precise soon, an intuitive grasp suffices for now.

The image of the scene can be represented as a function with support on a compact subset

Ω ⊂ R2 of the imaging surface (e.g. the retina or the CCD sensor). The brightness at a particular

point is constrained to be a positive3 value that depends on the radiance r, the surface S and

the optics of the imaging device. Define the vector u ∈ U where U is the set of parameters (for

instance focal length, optical center, lens aperture etc.) that describe the geometry of the imaging

device. We denote the image of the scene as IS
u (·, r) to emphasize its dependence on the radiance

r, the surface S and the parameters u of the optics.

The shape S is represented as a piecewise smooth function. We consider the radiance4 r to be

a positive integrable function defined on S, and we also assume that the scene is populated by

Lambertian5 objects. Given these assumptions, it is possible to find a change of coordinates so

that both the radiance r and the surface S are defined on the domain Ω.

Based on these assumptions, a model of the imaging process that is suitable to study the

2This section introduces the problem of depth from defocus and our notation. The reader who is familiar with
the literature may skip to Section 2.

3We use the term “positive” for a quantity x to indicate x ≥ 0. When x > 0 we say that x is “strictly positive”.
4Note that, since neither the light source nor the viewer move, we do not make a distinction between radiance

and reflectance in this paper. This corresponds to assuming that the appearance of the surface does not change
when seen from different points on the lens. This is the case when the aperture is negligible relative to the distance
from the scene.

5A surface is called Lambertian if its bidirectional reflectance distribution function is independent of the outgoing
direction (and, by the reciprocity principle, of the incoming direction as well). An intuitive notion is that a
Lambertian surface appears equally bright from all viewing directions.
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accommodation cue, is given by integral equations of the form

IS
u (y, r) =

∫

Ω

hS
u(y,x)r(x)dx (1)

where y ∈ Ω are the image plane coordinates, and x ∈ Ω are the scene coordinates. The

kernel h has two different interpretations: for any fixed x ∈ Ω, the function y 7→ hS
u(y,x) is the

point-spread function of the optics; dually, for any fixed y ∈ Ω, the function x 7→ hS
u(y,x) is a

function that has the normalization property

∫

R2

hS
u(y,x)dx = 1. (2)

Both functions can be either a delta measure or a bounded function (that is continuous inside

a support, but possibly discontinuous across its border); they depend on u ∈ U , the camera

parameters, and on the surface S.

Given the characteristics of the kernel, we note that, by duality, r belongs to Lloc(R2), which

includes locally integrable positive functions as well as delta measures. This is why we call r the

radiance distribution, or energy distribution6.

Since the model Eq. (1) is common to most of the literature on shape from defocus, we will not

further motivate it here, and adopt it for analysis in the following sections (see book by Chaudhuri

and Rajagopalan for details [3]).

In some particular case the surfaces may be described by some parameters s. For example,

suppose that S consists of a single slanted plane: the scene S is then completely described by

6The term distribution is used in the sense of the theory of distributions (see for instance [9]), and not in the
sense of probability.
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the intercept with the optical axis SZ , and by a reduced normal ñ, so that the surface S can be

represented by the parameters s = (SZ , ñ) ∈ R3. In particular, in Appendix C we will study the

case of equifocal planes. We will consider the (ideal) model of a thin lens camera that is imaging

an equifocal plane. In this case the kernel hS
u(y,x) takes the form of a convolutional pillbox kernel.

The scene is completely described by the depth s = z of the imaged plane, and the parameters

u encode the geometry of the camera. The same surface representation will be used locally at

each point in Experiments, Section 6. This will considerably simplify the implementation of the

proposed algorithm for estimating depth from defocus.

In Eq. (1), we assume that the values IS
u (y, r) can be measured for each y ∈ Ω and control

parameter u ∈ U . The energy distribution, or radiance, r is unknown, and hS
u(y,x) is known

only up to the surface S, which is unknown. The scope of this paper can be summarized into the

following question:

Question 1 : To what extent and under what conditions can the radiance r and the surface S

be reconstructed from measurements of defocused images IS
u (y, r)?

The next few sections are devoted to answering the above question. We proceed in increasing

order of generality, from assuming that the radiance r can be chosen purposefully (Section 2) to an

arbitrary unknown variation (Section 4). Along the way, we point out some issues concerning the

hypothesis on the radiance in the design of algorithms for reconstructing shape from focus/defocus

(Section 3).
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2 Weak Observability

The concept of “weak observability”, which we are about to define, is relevant to the problem of

shape reconstruction from active usage of the control u and the radiance pattern r.

Consider two scenes with surfaces S and S ′ respectively.

Definition 1 We say that a surface S is weakly indistinguishable from a surface S ′ if for all

possible r ∈ Lloc(R2) there exists at least a radiance r′ ∈ Lloc(R2) such that we have

IS
u (y, r) = IS′

u (y, r′) ∀ y ∈ Ω ∀ u ∈ U . (3)

Two surfaces are weakly distinguishable if they are not weakly indistinguishable. If a surface S is

weakly distinguishable from any other surface, we say that it is weakly observable.

Piecewise smooth surfaces may have discontinuities (which form a set of measure zero). We do

not distinguish between surfaces that differ on a set of measure zero.

The purpose of this section is to establish that piecewise smooth surfaces are weakly observable.

In order to prove this statement we need to make explicit some properties of the imaging system.

In particular,

1) For each scalar z > 0, and for each y ∈ Ω, there exists a setting ū, which we call focus

setting, and an open set O ⊂ Ω, such that y ∈ O and for any surface S smooth in O with

S(y) = z, we have

hS
ū(y,x) = δ(y − x) ∀ x ∈ O

2) Furthermore, given a scalar z > 0 and a y ∈ Ω, such a focus setting ū is unique in U .
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3) For any surface S and for any open O′ ⊂ Ω such that S is smooth in O′, we have

hS
u(y,x) > 0 ∀ x, y ∈ O′

whenever u is not a focus setting.

The above statements formalize some of the properties of typical real aperture cameras. The

first statement corresponds to guaranteeing the existence of a control u at each point y such that

the resulting image of that point is in focus. Notice that the control u may change at each point

y depending on the scene’s surface. The second property states that such a control is unique.

Finally, when the kernel is not a Dirac delta function, it is a positive function over an open set.

We wish to emphasize that the existence of a focus setting is a mathematical idealization. In

practice, diffraction and other optical effects prevent a kernel from approaching a delta distribu-

tion. Nevertheless, analysis based on an idealized model can shed light on the design of algorithms

operating on real data. Under the above conditions we can state the following result

Proposition 1 Any piecewise smooth surface S is weakly observable.

Proof. See Appendix A.

Proposition 1 shows that it is possible – in principle – to distinguish the shape of a surface from

that of any other surface by looking at images under different camera settings u and radiances r.

This, however, requires the active usage of the control u and of the radiance r. While it may be

possible to change r in an active vision context, it is not the case in a general setting.

The definition of weak observability leaves the freedom to choose the radiance r to distinguish S

from S ′. As we have seen in the proposition above, this is indeed sufficient to render any piecewise
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smooth surface observable. However, a natural question is left open:

Question 2 : Can a radiance r be found, that allows distinguishing S from any other surface?

We address this issue in the next subsection.

2.1 Excitation

Let I(S|r) denote the set of surfaces that cannot be distinguished from S given the energy

distribution r:

I(S|r) = {S̃ | I S̃
u (y, r) = IS

u (y, r) ∀ y ∈ Ω,u ∈ U} (4)

Note that we are using the same radiance on both surfaces S, S̃. This is the case, for instance,

when using structured light, so that r is a (static) pattern projected onto a surface. Clearly, not

all radiances allow distinguishing two surfaces. For instance, r = 0 does not allow distinguishing

any surface. We now discuss the existence of a “sufficiently exciting” radiance.

Definition 2 We say that a distribution r is sufficiently exciting for S if

I(S|r) = {S}. (5)

We conjecture that distributions with unbounded variation on any open subset of the image are

sufficiently exciting for any surface, i.e. “universally exciting.” A motivation for this conjecture

can be extrapolated from the discussion relative to L2
loc(R2) that follows in Section 3, as we will

see in Remark 1.
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3 Physically realizable radiances, resolution and harmonic

components

Energy distributions with unbounded variation cannot be physically realized. Therefore, in this

section we are interested in introducing a notion of “bandwidth” on the space of energy distribu-

tions, which would allow us to model it as L2(R2). However, such a restriction is legitimate only

if the radiance r does not have any harmonic component, which we will define shortly. Before

doing so, we remind the reader of the basic properties of harmonic functions.

Definition 3 A function r : R2 7→ R is said to be harmonic in an open region O ⊂ R2 if

∆r(x)
.
=

2∑
i=1

∂2

∂x2
i

r(x) = 0

for all x ∈ O.

Proposition 2 (mean-value property) If r : R2 7→ R is harmonic, then, for any integrable

function F : R2 7→ R that is rotationally symmetric,

∫
F (y − x)r(x)dx = r(y)

∫
F (x)dx

whenever the integrals exist.

Proof. See Appendix B.

Corollary 1 In general
∫

hS
u(y,x) dx = 1; when we are imaging an equifocal plane, the kernel

hS
u(y, ·) is indeed rotationally symmetric. Hence, the above property leads us to conclude that, in
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that case, if r is harmonic, then no information can be obtained from the accommodation cue;

from [19], we have that, in many cases, hS
u(y, ·) can be approximated by a circularly symmetric

function; if r is a harmonic function, then

∫
hS

u(y,x)r(x)dx=̃r(y) (6)

so that we can state that harmonic radiances are negligible as carriers of shape information.

A simple example of a harmonic radiance is r(x) = a0x + a1, where a0 and a1 are constants (i.e.

a brightness gradient). It is easy to convince ourselves that when imaging an equifocal plane in

real scenes, images generated by such a radiance do not change for any focal setting (i.e. they

appear as always perfectly focused).

The above result says that if one decomposes a radiance into the sum of a harmonic function and

a square integrable function, the harmonic component can (and should) be neglected. Therefore,

one can restrict the analysis to the non-harmonic component of the radiance, which we represent

as a function in the space L2(R2). This leads naturally to a notion of “bandwidth”, as we describe

below.

Definition 4 Let {θi} be an orthonormal basis of L2(R2). We say that a radiance r has a degree

of definition (or degree of complexity) k if there exists a set of coefficients αi, i = 1 . . . k such

that

r(x) =
k∑

i=1

αiθi(x). (7)

When k < ∞ we say that the distribution r is band-limited.
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Note that for practical purposes there is no loss of generality in assuming that r ∈ L2(R2), since

the energy emitted from a surface is necessarily finite and the definition is necessarily limited

by the optics. If we also assume that the kernels hS
u ∈ L2(R2 × R2), we can define a degree of

resolution for the surface S.

Definition 5 Let hS
u ∈ L2(R2 × R2). If there exists a positive real integer ρ and coefficients

βj, j = 1 . . . ρ such that

hS
u(y,x) =

ρ∑
j=1

βj(y,u, S)θj(x) (8)

then we say that the surface S has a degree of resolution ρ.

The above definitions of degrees of complexity and resolution depend upon the choice of basis of

L2(R2). In the following, we will always assume that the two are defined relative to the same

basis. There is a natural link between the degree of complexity of a distribution and the degree

of resolution at which two surfaces can be distinguished.

Proposition 3 Let r be a band-limited distribution with degree of complexity k. Then two surfaces

S1 and S2 can only be distinguished up to the resolution determined by k, that is, if we write

hS
u(y,x) =

∞∑
j=1

βj(y,u, S)θj(x) (9)

then
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I(S1|r) ⊃ {S2 | βj(y,u, S1) = βj(y,u, S2)

∀ y ∈ Ω, u ∈ U , j = 1 . . . k}. (10)

Proof. Substituting the expression of r in terms of the basis θi, we have

IS1
u (y, r) =

k∑

i,j=1

βj(y,u, S1)αi

∫
θj(x)θi(x)dx +

∫ ∞∑

i,j=k+1

βj(y,u, S1)αiθi(x)θj(x)dx. (11)

From the orthogonality of the basis elements θi we are left with

IS1
u (y, r) =

k∑

i=1

βi(y,u, S1)αi (12)

from which we see that, if βi(y,u, S1) = βi(y,u, S2) for all i = 1 . . . k, then IS1
u (y, r) = IS2

u (y, r) for all

y,u.

Remark 1 The practical value of the last proposition is to state that, the more “irregular” the

radiance, the more resolving power it has. In the case of structured light, the proposition establishes

that irregular patterns should be used in conjunction with accommodation. An “infinitely irregular”

pattern should therefore be universally exciting, as conjectured in the previous section.

We note that, as suggested by an anonymous reviewer, the degree of resolution with which two

surfaces can be distinguished also depends upon the optics of the imaging system. In our analysis

this is taken into account by the degree of complexity of the radiance, that can itself be limited,
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or it can be limited by the optics of the imaging system.

Besides the fact that delta distributions are a mathematical idealization and cannot be physi-

cally realized, it is most often the case that we cannot choose the distribution r at will. Rather,

r is a property of the scene being viewed, over which we have no control. In the next section we

will consider the observability of a scene depending upon its particular radiance.

4 Strong Observability

Definition 6 We say that the pair (S2, r2) is indistinguishable from the pair (S1, r1) if

IS1
u (y, r1) = IS2

u (y, r2) ∀ y ∈ Ω ∀ u ∈ U . (13)

If the set of pairs that are indistinguishable from (S1, r1) is a singleton (i.e. it contains only

(S1, r1)), we say (S1, r1) is strongly distinguishable. The following proposition characterizes the

set of indistinguishable scenes in terms of their coefficients in the basis {θi}.

Proposition 4 Let r1 have degree of definition k. The set of scenes (S2, r2) that are indistin-

guishable from (S1, r1) are those for which r2 = r1 up to a degree of definition k, and S1 = S2 up

to a resolution ρ = k.

Proof. For (S2, r2) to be indistinguishable from (S1, r1) we must have

k∑

i,j=1

βj(y,u, S1)α1i

∫
θi(x)θj(x)dx =

∞∑

i,j=1

βj(y,u, S2)α2i

∫
θi(x)θj(x)dx (14)
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for all y and u. From the orthogonality of {θi} and the arbitrariness of y,u we conclude that

α1i = α2i ∀ i = 1 . . . k (15)

from which we have that βj(y,u, S1) = βj(y,u, S2) for almost all y, u and for all j = 1 . . . k, and

therefore S1 = S2 almost everywhere up to the degree of definition k.

The above proposition is independent of the particular imaging device used, in the sense that

the dependency is coded into the coefficients βi. Any explicit characterization will necessarily be

dependent on the particular imaging device used. It is possible to give explicit examples using

particular devices, for instance those with kernels described in [19], and concentrating on a class of

surfaces, for instance slanted planes or occluding boundaries. The calculations are straightforward

but messy, and are therefore not reported here.

5 Optimal estimation

In this section we formulate the problem of optimally estimating depth from an equifocal imaging

model. Recall that in the imaging model (1) all quantities are constrained to be positive: r because

it represents the radiant energy (which cannot be negative), hS
u because it specifies the region of

space over which energy is integrated, and IS
u (y, r) because it measures the photon count on the

surface of the sensor (CCD) corresponding to the pixel y. We are interested in estimating the

energy distribution r and the parameters s that describe the shape S, by measuring a finite number

L of images obtained with different camera settings u1, . . . ,uL. If we collect the corresponding

images IS
u1

, . . . , IS
uL

and organize them into a vector IS =
[
IS
u1

. . . IS
uL

]
(and so for the kernels hS

ui
,
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hS =
[
hS

u1
. . . hS

uL

]
), we can write:

IS(y, r) =

∫

Ω

hS(x,y)r(x)dx. (16)

The collection of images IS(·, r) represents the observations (or measurements) from the scene.

Together with it we define a collection of estimated images which we generate introducing our

current estimates for radiance r̂ and surface parameters ŝ (which encode the estimated surface Ŝ)

in the above equation. We call such an estimated image BŜ
u(·, r̂), and the corresponding collection

BŜ =
[
BŜ

u1
. . . BŜ

uL

]
:

BŜ(y, r̂)
.
=

∫

Ω

hŜ(x,y)r̂(x)dx. (17)

The collection IS(·, r) is measured on the pixel grid and, hence, its domain Γ (and the corre-

sponding domain of BŜ(·, r̂)) is a finite lattice Γ = [x1, . . . , xN ]× [y1, . . . , yM ] for some integers N

and M .

We now want a “criterion” Φ (or cost function) to measure the discrepancy between the collec-

tion of measured images IS(·, r) and the collection of estimated images BŜ(·, r̂), so that we can

formulate the problem of reconstructing both the radiance and the surface parameters in terms

of the minimization of Φ. Common choices of criteria include, for example, the least-squares dis-

tance between IS(·, r) and BŜ(·, r̂), or the integral of the absolute value of their difference (total

variation) [2].

The choice of such a criterion is in principle arbitrary as long as the criterion satisfies a basic

set of properties (i.e. it is always positive, and 0 if and only if IS(·, r) and BŜ(·, r̂) are identical),
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and can lead to very different results. We follow Csiszár’s approach [5] that poses the problem

of defining an “optimal” discrepancy function within an axiomatic framework. Csiszár defines a

set of desirable, but general, properties that a discrepancy measure should satisfy. He concludes

that, when the quantities involved are constrained to be positive7 (such as in our case), the

only consistent choice of criterion is the so-called information divergence, or I-divergence, which

generalizes the well-known Kullback-Leibler pseudo-metric and is defined as

Φ
(
IS(·, r)||BŜ(·, r̂)

)
.
=

∑
y∈Γ

[
IS(y, r) log

IS(y, r)

BŜ(y, r̂)
− IS(y, r) + BŜ(y, r̂)

]
(18)

where log(·) indicates the natural logarithm. Notice that the function defined above is always

positive and is 0 if and only if IS(·, r) coincides with BŜ(·, r̂). However, the I-divergence is not a

true metric as it does not satisfy the triangular inequality.

The I-divergence is defined only for positive functions. We assume ŝ represents a positive

function (with respect to the chosen parameterization) and r̂ is a positive function defined on R2.

Furthermore, we assume that ŝ and r̂ are such that the estimated image BŜ(y, r̂) (where Ŝ is the

surface generated with the parameters ŝ) has finite values for any y ∈ Γ. In this case, we say that

ŝ and r̂ are admissible.

In order to emphasize the dependency of the cost function Φ on the parameters ŝ and the

7When there are no positivity constraints, Csiszár argues that the only consistent choice of discrepancy criterion
is the L2 norm, which we have addressed in [39].
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radiance r̂, we define

φ(ŝ, r̂) = Φ
(
IS(·, r)||BŜ(·, r̂)

)
. (19)

Therefore, we formulate the problem of simultaneously estimating the shape of a surface encoded

by the parameters s and its radiance r as that of finding ŝ and r̂ that minimize the I-divergence:

ŝ, r̂ = arg min
s̃,r̃

φ (s̃, r̃) . (20)

5.1 Alternating minimization

In general, the problem in (20) is nonlinear and infinite-dimensional. Therefore, we concentrate

our attention at the outset to (local) iterative schemes that approximate the optimal solution. To

this end, suppose an initial estimate of r is given: r0. Then, iteratively solving the two following

optimization problems





sk+1
.
= arg min

s̃
φ(s̃, rk)

rk+1
.
= arg min

r̃
φ(sk+1, r̃)

(21)

leads to the (local) minimization of φ, since

0 ≤ φ(sk+1, rk+1) ≤ φ(sk+1, rk) ≤ φ(sk, rk). (22)
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However, solving the two optimization problems in (21) may be an overkill. In order to have the

sequence {φ(sk, rk)} converging monotonically it suffices that, at each step, we choose sk and rk

in such a way as to guarantee that Eq. (22) holds, that is





sk+1

∣∣∣ φ(sk+1, r̃) ≤ φ(sk, r̃) r̃ = rk

rk+1

∣∣∣ φ(s̃, rk+1) ≤ φ(s̃, rk) s̃ = sk+1.

(23)

The iteration step of the surface parameters sk can be realized in a number of ways.

In the next section we will adopt the equifocal assumption, which in general holds only locally

and where the surface is smooth. However, the derivation of the minimization algorithm that

follows does not depend on this particular choice. We generically indicate the step on the surface

parameters as:

sk+1 = arg min
s̃

φ (s̃, rk) . (24)

The second step is obtained from the Kuhn-Tucker conditions [17] associated with the problem of

minimizing φ for fixed s̃ under positivity constraints for rk+1:

∑
y∈Γ

hS̃(y,x)IS(y, r)∫
Ω

hS̃(y, x̄)rk+1(x̄)dx̄
=





=
∑
y∈Γ

hS̃(y,x) ∀ x
∣∣∣ rk+1(x) > 0

≤
∑
y∈Γ

hS̃(y,x) ∀ x
∣∣∣ rk+1(x) = 0.

(25)

Since such conditions cannot be solved in closed form, we look for an iterative procedure for rk
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that will converge to a fixed point. Following Snyder et al. [38], we choose

F S̃
rk

(x)
.
=

1∑
y∈Γ hS̃(y,x)

∑
y∈Γ

hS̃(y,x)IS(y, r)

BS̃(y, rk)
(26)

and define the following iteration:

rk+1(x) = rk(x)F S̃
rk

(x) ∀ x ∈ Ω. (27)

It is important to point out that this iteration decreases the I-divergence φ not only when we use

the exact kernel hS, as it is shown in Snyder et al. [38], but also with any other kernel satisfying

the positivity and smoothness constraint. This fact is proven by the following claim.

Proposition 5 Let r0 be a non-negative real-valued function defined on R2, and let the sequence

rk be defined according to (27). Then φ(s̃, rk+1) ≤ φ(s̃, rk) ∀ k > 0 and for all admissible surface

parameters s̃. Furthermore, equality holds if and only if rk+1 = rk.

Proof. The proof follows Snyder et al. [38]. From the definition of φ in Eq. (18) we get

φ(s̃, rk+1)− φ(s̃, rk) = −
∑

y∈Γ

IS(y, r) log
BS̃(y, rk+1)

BS̃(y, rk)
+

∑

y∈Γ

BS̃(y, rk+1)−BS̃(y, rk). (28)

The second sum in the above expression is given by

∑

y∈Γ

∫

Ω
hS̃(y,x)rk+1(x)dx−

∑

y∈Γ

∫

Ω
hS̃(y,x)rk(x)dx =

=
∫

Ω
hS̃

0 (x)rk+1(x)dx−
∫

Ω
hS̃

0 (x)rk(x)dx (29)

where we have defined hS̃
0 (x) =

∑
y∈Γ hS̃(y,x), while from the expression of rk+1 in (27) we have that
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the ratio in the first sum is

BS̃(y, rk+1)

BS̃(y, rk)
=

∫

Ω
F S̃

rk
(x)

hS̃(y,x)rk(x)

BS̃(y, rk)
dx. (30)

We next note that, from Jensen’s inequality [4],

log

(∫

Ω
F S̃

rk
(x)

hS̃(y,x)rk(x)

BS̃(y, rk)
dx

)
≥

∫

Ω

hS̃(y,x)rk(x)

BS̃(y, rk)
log

(
F S̃

rk
(x)

)
dx (31)

since the ratio hS̃(y,x)rk(x)

BS̃(y,rk)
can be interpreted as a probability density on Ω (it integrates to 1 on Ω and it

is always positive) dependent on the parameters s̃ and rk, and therefore the expression in (28) is

φ(s̃, rk+1)− φ(s̃, rk) ≤ −
∑

y∈Γ

IS(y, r)
∫

Ω
log(F S̃

rk
(x))

hS̃(y,x)rk(x)

BS̃(y, rk)
dx +

∫

Ω
hS̃

0 (x)rk+1(x)dx−
∫

Ω
hS̃

0 (x)rk(x)dx = −Φ
(
hS̃

0 (·)rk+1(·)||hS̃
0 (·)rk(·)

)
≤ 0 (32)

Notice that the right-hand side of the last expression is still the I-divergence of two positive functions.

Therefore, we have

φ(s̃, rk+1)− φ(s̃, rk) ≤ 0. (33)

Note that Jensen’s inequality becomes an equality if and only if F S̃
rk

is a constant; since the only admissible

constant value is 1, because of the normalization constraint, we have rk+1 = rk, which concludes the proof.

Finally, we can conclude that the proposed algorithm generates a monotonically decreasing se-

quence of values of the cost function φ.
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Corollary 2 Let s0, r0 be admissible initial conditions for the sequences sk and rk defined from

equations (24) and (27) respectively. The sequence φ(sk, rk) converges to a limit φ∗:

lim
k→∞

φ(sk, rk) = φ∗. (34)

Proof. Follows directly from equations (24), (22) and Proposition 5, together with the fact that the

I-divergence is bounded from below by zero.

Even if φ(sk, rk) converges to a limit, it is not necessarily the case that sk and rk do. Whether this

happens or not depends on the observability of the model (16), which has been analyzed in the

previous sections. In Appendix D we compute the Cramér-Rao lower bound considering that the

images are affected by Gaussian noise. The Cramér-Rao bound allows us to derive conclusions

about the settings that yield the best estimates.

6 Experiments

In order to implement the iterative steps required in the algorithm just described, it is necessary to

choose appropriate approximations for the radiance r and the surface parameters s. As mentioned

earlier, we adopt the equifocal assumption which is widely used in shape from defocus. However,

as discussed above, our algorithm depend upon that choice, and other surface models can be

considered as well. The equifocal assumption holds locally. Therefore, we consider each point in

the images to be independent of each other, and restrict our attention to a window of fixed size

around it.
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6.1 Implementation

A necessary condition to start the iterative algorithm is to provide an initial admissible radiance

r0. We choose it to be equal to one of the two input images (i.e. as if it were generated by a plane

in focus). This choice is guaranteed to be admissible since the image is positive and of finite values.

Also, it is important to determine the appropriate local domain W ⊂ R2 of the radiance r where

the equifocal assumption provides a meaningful approximation of the local surface. The fact that

we use an equifocal imaging model allows us to use the same reference frame both for the image

plane and the surface. However, the image in any given patch is composed of contributions from

a region of space possibly bigger than the one corresponding to the patch itself. Thus, we write

IS
u (y, r) =

∫
WSW0

hS
u(y,x)r(x)dx, with y ∈ ΓW (the image patch domain corresponding to the

local radiance domain W), and where W0 is the domain corresponding to the contribution to the

image patch ΓW outside the region W . The size of W0 clearly depends on the maximum amount

of blurring that affects the patch. Hence, once we have chosen a finite dimensional representation

of the regions ΓW , W and W0, we also have restricted the spectrum of scenes of which we can

reconstruct both the shape and the radiance.

Since the intensity value at each pixel is the (area) integration of all the photons hitting a single

CCD cell, the smallest blurring radius is limited by the physical size of the CCD cell. This means

that, when an image is in focus, we can at best retrieve a radiance defined on a grid whose unit

elements depend on the pixel size (see also [20]). Furthermore, diffraction and similar phenomena

contribute to increase the minimum blurring radius. This motivates us to reduce the finite (local)

representation of the radiance to a grid whose coordinates correspond to the grid coordinates of

the image domain. Hence, we will speak of window sizes in terms of pixels both for images and
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radiance, since there is a one to one correspondence between them.

We run experiments both on real and synthetic images. In the synthetic data set the overlapping

effect of the contribution of the radiance from W0 is not considered since the whole images are

generated according to the correct model. In the data set of real images provided to us by

S. K. Nayar, the equifocal planes are at 529mm and 869mm, with a maximum blurring radius

of 2.3 pixels. We found experimentally that a good tradeoff between accuracy and robustness

in choosing W is to use a 7 × 7 pixels window. Hence, the total integration domain for each

patch W⋃W0 is of 13 × 13 pixels. In the second data set of real images the maximum blurring

radius amounts to 5 pixels. In addition, the minimization step on the surface parameters includes

a regularization term. This term guarantees that the recovered surface remains smooth while

minimizing the cost function.

6.2 Experiments with synthetic images

In this set of experiments, we investigate the robustness of the algorithm to noise. The radiance has

been generated as a random pattern. The surface is an equifocal plane and the focal settings are

chosen such as to generate blurring radii not bigger than 2 pixels. We consider additive Gaussian

noise with a variance that ranges from 1% to 10% of the radiance intensity magnitude (see

Figure 1), which guarantees that the positivity constraint is still satisfied with high probability;

however, we manually impose the positivity of the radiance (by taking its absolute value), since

we need the radiance to be admissible for the algorithm to converge. We run 50 experiments

changing the radiance being imaged, for each of the 10 noise levels. Of the generated noisy image

pairs we consider patches of size 7×7 pixels. Smaller patches result in greater sensitivity to noise,
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while larger ones challenge the equifocal approximation. The results of the computed depths are

summarized in Figure 1. We iterate the algorithm 5 times at each point.
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Figure 1: Experiments with synthetic data: mean and standard deviation of the depth error as a
function of image noise variance. The mean of the depth error ε is normalized with respect to the
true depth, i.e. ε = ŝ−s

s
where ŝ is the estimated surface parameter (a single parameter in the case

of an equifocal plane) and s is the true surface parameter. The standard deviation of the depth
error is also normalized with respect to the true surface parameter s. Similarly, the noise variance
is normalized with respect to the radiance magnitude so that the value 0.01 in the abscissa means
that the variance is 0.01 ∗M (i.e. 1% of M), where M is the radiance magnitude.

As can be seen, the algorithm is quite robust to additive noise, although if the radiance is not

sufficiently exciting (in the sense defined in Subsection 2.1) it does not converge. This behavior

is evident in the experiments with real images described below.
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6.3 Experiments with real images

We have tested the algorithm on the two images in Figure 3 provided to us by S. K. Nayar, and

on the two images in Figure 5. These images were generated by a telecentric optical system (see

[44] for more details) that compensates for magnification effects usually occurring as the focus

settings are changing. A side effect is that the actual lens diameter needs to be adjusted according

to the new model shown in Figure 2. The external aperture is a plane from which a disc of radius

a has been removed. The plane is equifocal and placed at a distance f (the focal length) from the

lens. When defining the kernel parameters we substitute the true lens diameter with the modified

diameter D = 2aZF

ZF−f
, where ZF is the distance from the lens which is in focus when the focal

length is f . Notice that ZF can be computed through the thin lens law once focal length and the

distance between image plane and lens are known.

For this experiment, in order to speed up the computation, we choose to run the algorithm

for 5 iterations only. At points where the radiance is not sufficiently exciting, or where the local

approximation with an equifocal plane is not valid, the algorithm fails to converge. This explains

why in Figure 4 some depth estimates are visibly incorrect. In the second experiment we explicitly

impose a global smoothness constraint during the iteration step on the surface parameters and

obtain the results shown in Figure 6. Finally, in Figure 7 we generate a novel pinhole view of the

scene texture-mapping the estimated radiance onto the estimated surface.
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Figure 2: The modified diameter in the telecentric lens model.

Conclusions

We have shown that accommodation is an unambiguous visual cue. We have done so by defining

two notions of observability: weak observability and strong observability. We showed that in the

presence of a “scanning light” or a “structured light” it is possible to distinguish the shape of any

surface (weak observability). It is also possible to approximate to an arbitrary degree (although

never realize exactly) structured patterns that allow distinguishing any two surfaces (i.e. patterns

that approximate a universally exciting radiance). In the absence of prior information on the

radiance of the scene, we showed that two surfaces can be distinguished up to a degree of resolution

defined by the complexity of the radiance (strong observability) and by the optics of the imaging

system.

We have proposed a solution to the problem of reconstructing shape and radiance of a scene

using I-divergence as a criterion in an optimization framework. The algorithm is iterative, and

we gave a proof of its convergence to a (local) minimum which, by construction, is admissible in
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Figure 3: Near-focused original image (left); far-focused original image (right) (courtesy of
S. K. Nayar). The difference between the two images is barely perceivable since the two focal
planes are only 340 mm apart.

the sense of resulting in a positive radiance and imaging kernel.
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A Proof of Proposition 1

Proof. We will prove the statement by contradiction. Suppose there exists a surface S′ and an open

O ⊂ Ω such that S′(x) 6= S(x) ∀x ∈ O. Then, from the definition of weak indistinguishability, we have

that for any radiance r there exists a radiance r′ such that IS
u (y, r) = IS′

u (y, r′) ∀ y ∈ Ω ∀ u ∈ U . By

Property 1 in Section 2, for any y ∈ Ω there exists a focus setting ū such that IS
ū (y, r) = r(y) and hence

IS′
ū (y, r′) .=

∫
hS′
ū (y,x)r′(x)dx = r(y). (35)

Similarly, for any y ∈ Ω there exists a focus setting ū′ such that IS′
ū′ (y, r′) = r′(y) and

IS
ū′(y, r) .=

∫
hS
ū′(y,x)r(x)dx = r′(y). (36)

Notice that, for a given radiance r, we obtained an explicit expression of the radiance r′ such that S and

S′ are indistinguishable. Substituting (36) in (35), we obtain

∫∫
hS′
ū (y,x)hS

ū′(x, x̃)r(x̃)dx̃dx = r(y) ∀ y ∈ Ω ∀r ∈ L2
loc(R2). (37)

Since the above equation holds for any r ∈ L2
loc(R2), it follows that

∫
hS′
ū (y,x)hS

ū′(x, x̃)dx = δ(y − x̃) ∀ y, x̃ ∈ O. (38)

However, since S′(x) 6= S(x) for x ∈ O ⊂ Ω, then ū is not a focus setting for S′ in O and ū′ is not a

focus setting for S in O by Property 2. This means that, by Property 3, there exists an open set Ō ⊂ O

such that hS′
ū (y,x) > 0 and hS

ū′(x, x̃) > 0 for any y,x, x̃ ∈ Ō. Hence, if we choose y, x̃ ∈ Ō with y 6= x̃,
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we have

∫
hS′
ū (y,x)hS

ū′(x, x̃)dx > 0 6= δ(y − x̃) = 0, (39)

which is a contradiction.

B Proof of Proposition 2

Proof. Let f(|x|) = F (x), where f : R+ → R. Suppose that the above is true in the case y = 0: then it

is true in any case; indeed, we could otherwise substitute ry(x) = r(x + y), and

r(y)
∫

F (x)dx = ry(0)
∫

F (x)dx =
∫

f(|x̃|)ry(x̃)dx̃ =

=
∫

f(| − x̃|)r(x̃ + y)dx̃ =
∫

f(|y − x|)r(x)dx. (40)

Now, we are left with proving the proposition for y = 0. We change coordinates by

∫
f(|x|)r(x) dx =

∫ ∞

0

∫

Cρ

f(ρ)r(z) dρ dµρ(z) =
∫ ∞

0
f(ρ)

∫

Cρ

r(z) dµρ(z) dρ (41)

where Cρ is the circumference of radius ρ centered in 0, z ∈ Cρ, and µρ is the measure on Cρ (that

is, the restriction of the Hausdorff measure H1 to Cρ). Then, by the mean value theorem, (see [42],

Proposition 2.4 in Section 3.2)
∫

Cρ

r(z) dµρ(z) = 2πρr(0)
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and then
∫

f(|x|)r(x) dx = r(0)
∫ ∞

0
f(ρ)2πρ dρ = r(0)

∫
F (x) dx.

C Equifocal imaging models

Pillbox imaging model

Under conditions that are commonly accepted in the computer vision community, and explained

in detail in [19], we can approximate the kernel hS
u(y,x) in Equation (1) with a so-called “pillbox”

function pρ(y):

hS
u(y,x) = pρ(z,u)(y − x) (42)

where the surface S is represented by the parameter s = z, the depth of the imaged plane,

ρ = ρ(z,u) is the radius of the kernel, and

pρ(z,u)(y) =





1
πρ2 |y| ≤ ρ(z,u)

0 elsewhere.

(43)

Consider a finite number n ≥ 2 of different images IS
u1

...IS
un

of an equifocal infinite plane, generated

according to the model

IS
uj

(y) =

∫

R2

pρj
(y − x)r(x) dx (44)
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where ρj = ρ(z, uj). Then, we would like to solve that system of equations for the variables

(ρ1...ρn) (with ρi > 0 i = 1 . . . n) and the radiance r, given the images; indeed, we will be able to

recover the distance s = z, given u and (ρ1...ρn)8. We remark that we are considering an abstract,

noiseless, model.

Assume that r 6≡ 0, and that r has finite energy (that is r ∈ L2(R2)): then, by transforming

the image IS
u (y) to the Fourier domain, we have

∀ f, ÎS
uj

(f) = p̂ρj
(f)r̂(f) (45)

where p̂ρj
(f) is the Fourier transform of the pillbox function pρj

(y), and r̂(f) is the Fourier

transform of the radiance r(x). Thus, we can infer that the radiance is well determined once one

of the radii ρj is known. We recall that

p̂ρj
(f) =

2

ρj|f |J1(|f |ρj) (46)

where J1 is the Bessel function of the first kind.

Proposition 6 Suppose that we are given n ≥ 2 (different) defocused images9. Suppose that r

is non zero and has finite energy (or, equivalently, suppose that the images IS
uj

are non zero and

8Moreover, if the relationship ρj = ρ(z,uj) is known only up to certain number of parameters of the optics,
then, given a large enough number n of images, we may be able to recover the distance of the plane alongside the
parameters of the optics: this could lead to an auto-calibration of the model.

9By saying that the images are defocused and different we mean ρi > 0, and ρi 6= ρj when i 6= j.
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have finite energy); let (ρ1...ρn), r(x) be a solution to the equations

∀ j,y IS
uj

(y) =

∫

R2

pρj
(y − x)r(x) dx (47)

Then, (ρ1...ρn) is isolated in Rn.

This proposition states that, in this simplified model, the accommodation cue is “unambiguous”,

that is, the shape and camera parameters are “observable”, given the images: it is indeed possible

to solve equation (47) for the radiance and the distances of the planes, and to obtain a finite

number of isolated solutions.

Proof. Suppose that (ρ∗1...ρ
∗
n), r∗(x) is a solution. Let

A = {f | r̂∗(f) = 0} ∪ {0}

D0
.={f | ÎS

uj
(f) 6= p̂ρ∗j (f)r̂∗(f) for a j}

D1 = {f | p̂ρ∗j (f) = 0 for a j ≤ n} = {f | J1(|f |ρ∗j ) = 0 for a j}

(48)

the set D1 is union of a countable number of circles, so D0, D1 are sets of measure zero. For f 6∈

A ∪D0 ∪D1, we get ÎS
uj

(f) 6= 0, and then we define gρj (f) .=
p̂ρj (f)

ÎS
uj

(f)
so that gρ∗i (f) = 1

r̂∗(f) (for any i).

Whenever f 6∈ A∪D0 ∪D1, furthermore,
gρ∗

i
(f)

gρ∗
j
(f) = 1, so gρi (f)

gρj (f) is a well defined real number for (ρi, ρj)

in a neighborhood of (ρ∗i , ρ
∗
j ); so we define

dρi,ρj (f) .= log
(

gρi(f)
gρj (f)

)
(49)

(for i 6= j): then, dρ∗i ,ρ∗j (f) = 0 ∀ f ; more in general, if (ρ1...ρn) is a solution to (47), then dρi,ρj (f) =

0 ∀ f . We will prove that the solution (ρ∗1...ρ
∗
n) is isolated, by studying the derivatives of dρi,ρj w.r.t.
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ρi, ρj.

We compute the derivative of gρi with respect to ρi: we introduce the auxiliary variables σρi = |f |ρi;

then

∂

∂ρi
gρi(f) =

1
ÎS
uj

2|f | ∂

∂σρi

(
1

σρi

J1(σρi)
)

= − 2
ÎS
ui

(f)ρi

J2(|f |ρi). (50)

We define the set D2 = {f | J2(|f |ρ∗i ) = 0 for a i ≤ n} the set D2 is again union of a countable

number of circles, so it is a set of measure zero. Whenever f 6∈ A ∪ D0 ∪ D1 ∪ D2, we have that the

derivative ∂
∂ρi

gρ∗i (f) 6= 0 10; the gradient of dρi,ρj with respect to ρi, ρj is then

∇dρi,ρj =

(
∂

∂ρi
gρi

gρi

,−
∂

∂ρj
gρj

gρj

)
= |f |

(
−J2(|f |ρi)

J1(|f |ρi)
,
J2(|f |ρj)
J1(|f |ρj)

)
(51)

It is easy to see that ∂
∂ρi

dρi,ρj and ∂
∂ρj

dρi,ρj are non zero for f 6∈ A∪D0∪D1∪D2. Then, it is possible

to express ρi in terms of ρj (and vice versa) in equation {dρi,ρj = 0}: this implies that, locally in a

neighborhood of (ρ∗1...ρ
∗
n), there is at most a parametric curve (ρ1...ρn) = (ρ1(t)...ρn(t)) of solutions. If

there was such a curve, then, for any fixed i, j 6= i, all the gradients {∇dρi,ρj (f) | ∀ f 6∈ A∪D0∪D1∪D2}

would be parallel, that is, there would be constants vectors (ai,j , bi,j) (not zero) such that

ai,j
∂

∂ρi
dρ∗i ,ρ∗j (f) = bi,j

∂

∂ρj
dρ∗i ,ρ∗j (f) . (52)

We wish to show that this is not the case: we will show that the above cannot be an equality: this will

prove the proposition.

10Incidentally, this tells us that, for many values of f , it is possible to make explicit the dependence of ρi on
r̂(f): this will be mostly useful in studying how the noise affects the solution to (47).
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The equality

ai,j
J2(|f |ρ∗i )
J1(|f |ρ∗i )

= bi,j

J2(|f |ρ∗j )
J1(|f |ρ∗j )

(53)

that is,

ai,jJ2(|f |ρ∗i )J1(|f |ρ∗j ) = bi,jJ2(|f |ρ∗j )J1(|f |ρ∗i ) (54)

is an equality between analytic functions, valid for f 6∈ A∪D0 ∪D1 ∪D2. Therefore, it is valid for all f :

we obtain that

ai,jJ2(tρ∗i )J1(tρ∗j ) = bi,jJ2(tρ∗j )J1(tρ∗i ) ∀ t ∈ R (55)

(where t has been substituted for |f |) . Since J1(t) = t/2− t3/16+o(t3) while J2(t) = t2/8− t4/96+o(t4),

by substituting,

ai,j

(
(tρ∗i )

2/8− (tρ∗i )
4/96

)(
(tρ∗j )/2− (tρ∗j )

3/16
)−

−bi,j

(
(tρ∗j )

2/8− (tρ∗j )
4/96

)(
(tρ∗i )/2− (tρ∗i )

3/16
)

+ o(t5) = 0

= t3(ai,jρ
∗
i
2ρ∗j − bi,jρ

∗
i ρ
∗
j
2)/16 + t5

(
ai,j(ρ∗i

2ρ∗j
3/128 + ρ∗i

4ρ∗j/192)−

−bi,j(ρ∗j
2ρ∗i

3/128 + ρ∗j
4ρ∗i /192)

)
+ o(t5) = 0

(56)

By the theory of Taylor series,

ai,jρ
∗
i
2ρ∗j = bi,jρ

∗
i ρ
∗
j
2

ai,j(ρ∗i
2ρ∗j

3/128 + ρ∗i
4ρ∗j/192) = bi,j(ρ∗j

2ρ∗i
3/128 + ρ∗j

4ρ∗i /192)
(57)
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or

ai,jρ
∗
i = bi,jρ

∗
j

ai,j(ρ∗i ρ
∗
j
2/128 + ρ∗i

3/192) = bi,j(ρ∗jρ
∗
i
2/128 + ρ∗j

3/192)
(58)

or (having c = ai,j/bi,j)

ρ∗i = cρ∗j

cρ∗j
3(1/128 + 1/192) = c3ρ∗j

3/128 + ρ∗j
3/192

(59)

or

c3/128− c(1/128 + 1/192) + 1/192 = (c− 1)(c2/128− 1/192) = 0 (60)

whose solutions are c ∈ {1,±
√

2/3}; the first is to be excluded because otherwise ρ∗i = ρ∗j , the other two

since they do not satisfy (55).

D Cramér-Rao lower bound

In the previous sections we studied the observability and proposed an optimal algorithm for depth

from defocus from a deterministic point of view. Rather, in what follows we take a stochastic

approach to the problem. We consider images affected by Gaussian noise. Then, we compute

an approximation of the Cramér-Rao lower bound of the radiance step in Eq. (27) proposed in

Section 5.

The implementation of the algorithm requires that we represent the kernel family, the radiance

and the surface of the scene with finite dimensional vectors. Recall the discrete lattice Γ
.
=
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[x1, . . . , xN ]× [y1, . . . , yM ] for some integers N and M . We substitute the continuous coordinates

x and y with their discrete versions xi and yn, where i ∈ [1 . . . N ] and n ∈ [1 . . .M ]. Also, to

simplify the notation, we drop the arguments of the functions defined in Eq. (16) and denote

images as In
.
= Is(yn, r), kernels as hn,i

.
= hs(yn,xi) and radiances as ri

.
= r(xi). In this analysis

we approximate the image model with

In =
N∑

i=1

hn,i ri (61)

where the kernel satisfies

N∑
i=1

hn,i = 1 ∀ i ∈ [1 . . . N ]. (62)

We define INn (where the superscript N denotes that it is affected by noise), as a Gaussian

random variable with mean In and covariance σ2; the components of the random variable vector

IN .
= {INn }n=1..M are also independent from each other.

The probability density distribution of IN is therefore

pIN (IN ) =
M∏

n=1

1√
2πσ2

e−
(INn −In)2

2σ2 . (63)

The radiance step defined in Eq. (27) is recursive and nonlinear, and thus it is not suitable for

an evaluation of its covariance. However, we may be interested to analyze the “stability” of the

estimator around the solution. In this case we can approximate the estimated radiance r̂ with

the true radiance r and plug it in the right hand side of Eq. (27). Hence, with the notation just
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introduced, we obtain

r̂i = ri
1∑M

n=1 hn,i

M∑
n=1

hn,i INn
In

. (64)

This estimator is unbiased, as we have

E[r̂i] = ri
1∑M

n=1 hn,i

M∑
n=1

hn,i E[INn ]

In

= ri (65)

where E[·] denotes the expectation of a random variable.

Computing the Cramér-Rao lower bound consists in evaluating the Fisher information matrix

[IF ]i,j = −E

[
∂2 log

(
pIN (IN )

)

∂ri∂rj

]
i, j ∈ [1 . . . N ]. (66)

Once IF is known, the bound is expressed as

var{r̂} − I−1
F ≥ 0 (67)

where the vector r̂
.
= [r̂i]i=[1...N ] and the inequality is interpreted in the sense of positive semi-

definite matrices.

Now, we proceed with computing IF :

log
(
pIN (IN )

)
=

M∑
n=1

−(INn − In)2

2σ2
− log

(√
2πσ2

)
. (68)
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Taking the derivative of the last expression with respect to ri we have

∂ log
(
pIN (IN )

)

∂ri

=
M∑

n=1

INn − In

σ2
hn,i (69)

and it is easy to verify that it satisfies the regularity condition (a necessary condition to apply the

Cramér-Rao lower bound):

E

[
∂ log(pIN (IN ))

∂ri

]
= 0 ∀ i ∈ [1 . . . N ]. (70)

Now, taking derivatives with respect to rj we obtain:

∂2 log
(
pIN (IN )

)

∂ri∂rj

= −
M∑

n=1

hn,i hn,j

σ2
. (71)

Since the above equation is not dependent on any random variable, taking the expectation does

not change the expression, and we have:

[IF ]i,j =
M∑

n=1

hn,i hn,j

σ2
. (72)

To make the notation more compact, we denote with Hn the row vector [hn,1 . . . hn,N ]. Hence, the

bound is

var{r̂} ≥ σ2

(
M∑

n=1

HT
n Hn

)−1

. (73)
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As a last step we need to evaluate var{r̂}. This can be immediately determined and it results in:

[var{r̂}]i,j = E [(r̂i − ri)(r̂j − rj)] =
rirj∑M

m=1 hm,i

∑M
m=1 hm,j

M∑
n=1

hn,i hn,j
σ2

I2
n

. (74)

Notice that the variance σ2 appears on both sides of the inequality, and unless σ2 is zero (absence

of noise), we can remove it from both sides of Eq. (73). Again, to simplify the notation we define

the modified kernel h̃n,i
.
=

hn,iPM
m=1 hm,i

and its corresponding vector H̃n
.
= [h̃n,1 . . . h̃n,N ]. Finally, we

introduce the vectors r
.
= [r1 . . . rN ]T and Rn

.
= [r1h̃n,1 . . . rN h̃n,N ]. The bound is now expressed

as

M∑
n=1

RT
nRn

rT H̃T
n H̃nr

≥
(

M∑
n=1

H̃T
n H̃n

)−1

. (75)

We notice that the bound depends on the radiance being imaged and the kernel of the optics,

that in turn depends on the surface of the scene.

Consider the simplifying case of having an almost constant radiance vector r; recalling the earlier

discussions about observability of shape and radiance, this case yields a poor reconstruction and

can be analyzed as the worst case. The equation above becomes approximately

M∑
n=1

H̃T
n H̃n ≥

(
M∑

n=1

H̃T
n H̃n

)−1

(76)

which is satisfied if and only if
∑M

n=1 H̃T
n H̃n is the identity matrix (given the constraints on H̃n).

This corresponds to having an image focused everywhere. On the other hand, as our setting is such

that the scene is more and more defocused, the bound is less and less tight, and the estimation
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of the radiance worsens as expected.
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